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Forward

One of the most famous American physicists of the
twentieth century, Richard Feynman, in 1982 was the
first to propose using a quantum mechanical comput-
ing device to efficiently simulate quantum mechanical
many-body dynamics [1, 2, 3], a task that is exponen-
tially complex in the number of particles treated and
is completely intractable by any classical computing
means for large systems of many particles. In the two
decades following his work, remarkable progress has
been made both theoretically and experimentally in
the new field of quantum computation [4, 5]. Iron-
ically, however, most of the theoretical progress in
quantum computing has developed within the purview
of the computer scientist with the principle applica-
tions of efficient quantum information processing re-
lated to cryptography and secure quantum commu-
nication1. In an effort return to Feynman’s original
direction, the Air Force Research Laboratory and the
Air Force Office of Scientific Research has established a
multidisciplinary basic research theme calledQuantum
Computation for Physical Modeling to explore quan-
tum algorithms to model dynamical physical systems.
Our goal is to establish a practical and generic means
by which the power of quantum mechanics (that is,
quantum parallelism due to the superposition and en-
tanglement of states) can be used to speedup numeri-
cal simulations of interest to computational physicists.

Notwithstanding the veritable stampede towards
computer science related applications by most re-
searchers in the field of quantum computing, a few
maverick physicists have developed some quantum al-
gorithms to model quantum mechanical systems. A
starting point for this development was a problem

1References to specific publications in these subjects are so
ubiquitous in the quantum computing literature that we do not
include any here. Comprehensive collections of quantum com-
puting papers have been recently published [4, 5].

posed by Feynman himself to show that the one dimen-
sional Dirac equation could be modeled by a single-
speed particle traveling in a two-dimensional space-
time as a sum over zigzag paths of straight line ele-
ments [6], with the amplitude of a particular path con-
tributing to the kernel by the number of “collisions” or
corners along that zigzag path. This quantum lattice
gas representation of quantum mechanics is equivalent
to the well known path integral representation.2 A
quantum lattice gas accounts for all contributing paths
by simultaneously evolving many particles in a unitary
fashion. Therefore, instead of summing (or integrat-
ing over) paths as individual entities, all contributing
paths are effectively simulated in one fell swoop as a
combined field quantity. In the end, the collisional
interaction between particles in the quantum lattice
representation can be described by an effective field
theory (the Dirac equation in this particular case) at
the large-scale called the continuum limit.

Beginning in the mid 1990’s, a contemporaneous
series of quantum lattice-gas algorithms to model the
relativistic Dirac equation, equivalent to Feynman’s
original algorithm, were published by Succi [8, 9],
Bialynicki-Birula [10], and Meyer [11, 12, 13, 14, 15].
Furthermore, a series of papers on modeling the non-
relativisitic Schroedinger equation were published by
Boghosian and Taylor [16, 17, 18] and by Yepez and
Boghosian [19], the latter article appearing in this is-
sue. Our present goal in the Quantum Computation
for Physical Modeling project is accelerate this algo-
rithmic developmental effort that has occurred over
the past decade.

In fact, we hope to go further in the application
of this quantum algorithmic method. We have de-
veloped new efficient quantum lattice-gas algorithms
to model classical dynamical systems [20, 21, 22, 23].
Meyer also addresses this subject in his article on phys-

2A solution to Feynman’s “quantum lattice gas” problem was
published in 1984 by Jacobson and Schulman [7].
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ical quantum algorithms contained in this issue [24].
In the past, we have considered quantum algorithms
suited to globally phase-coherent quantum computers
[25], however our focus is presently on those quan-
tum algorithms suited to implementation on locally
phase-coherent quantum computers that are techno-
logically much simpler to experimentally implement
[26]. This program to use one quantum mechanical
system to model another quantum mechanical system
or classical system can perhaps best be described as
efficient analog computing, which in this context may
be termed analog quantum computing.

The principle technological obstacle to globally
phase-coherent quantum computation is the problem
of the uncontrolled decoherence of the quantum com-
puter’s wave function. The quantum computing com-
munity at large, following the traditional computer
scientist’s mindset for correcting bit-flip errors using
redundancy, has been investing much theoretical work
in attempts to develop generalized methods for quan-
tum error correction of bit-flip and phase-change errors
[27, 28, 29]. As an expedient alternative to this cum-
bersome approach, as demonstrated by the advent of
several nuclear magnetic resonance quantum comput-
ing experiments [30, 31, 32, 33], it is possible to avoid
bit-flip and phase-change errors altogether: Keep the
individual quantum computing elements small enough
so that all computation occurs within a single spin-
spin decoherence time where bit-flip and phase-change
errors are irrelevant.

Given this possibility of avoiding errors, it is nat-
ural to consider building a large-scale quantum com-
puting system by connecting many small ones together
in an array interconnected by nearest-neighbor clas-
sical communication channels. We call this type of
quantum mechanical device a type-II quantum com-
puter [26]. This hybrid architecture, combining classi-
cal massively parallelism and quantum parallelism, is
suited to modeling dynamical physical systems, such
as turbulent Navier-Stokes fluids [21, 25, 22, 23]. In
collaboration with the Nuclear Engineering Depart-
ment of MIT, we have developed a prototype type-II
quantum computer based on spatial nuclear magnetic
resonance spectroscopy. We use a gradient magnetic
field to distinguish individual layers in a liquid sample
so that each layer effectively becomes an individual
quantum computing node comprising an ensemble of
molecules. The first simulation of a quantum lattice-
gas model for the one-dimensional diffusion equation
[22] has been carried out on this quantum computer
prototype using the atomic spin-state of Carbon-13
and Hydrogen nuclei within a linear array of chloro-

form molecules [34]. This milestone represents the first
physical simulation to date on a quantum computer
and is contained in this issue. A subsequent paper
presenting an improved version of our type-II quan-
tum computer prototype, that corrects for various im-
plementation errors and uses better quantum control,
is also in preparation [35].

Our new quantum computing research theme is sup-
ported by several directorates of the Air Force Office
of Scientific Research with about two dozen univer-
sity research projects across the country to date. The
design and construction of several new type-II quan-
tum computer prototypes are now underway using var-
ious technologies including superconducting electron-
ics and quantum optics for example.

We have established a new annual workshop se-
ries dedicated to this subject of quantum compu-
tation for physical modeling (see our web site at
http://qubit.plh.af.mil for more details). The first
workshop in this series was held in the fall of 2000
in North Falmouth in Cape Cod, Massachusetts and
the following collections of articles contained in this is-
sue were contributed from this workshop. Our goal for
this workshop series is to annually publish a collection
of such contributed articles, to review our progress,
and to provide an open forum for new collaborators to
join us in this activity.
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